Disentangling Space and Time in Video with Hierarchical Variational Auto-encoders

نویسندگان

  • Will Grathwohl
  • Aaron Wilson
چکیده

There are many forms of feature information present in video data. Principle among them are object identity information which is largely static across multiple video frames, and object pose and style information which continuously transforms from frame to frame. Most existing models confound these two types of representation by mapping them to a shared feature space. In this paper we propose a probabilistic approach for learning separable representations of object identity and pose information using unsupervised video data. Our approach leverages a deep generative model with a factored prior distribution that encodes properties of temporal invariances in the hidden feature set. Learning is achieved via variational inference. We present results of learning identity and pose information on a dataset of moving characters as well as a dataset of rotating 3D objects. Our experimental results demonstrate our model’s success in factoring its representation, and demonstrate that the model achieves improved performance in transfer learning tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

Variational Recurrent Auto-Encoders

In this paper we propose a model that combines the strengths of RNNs and SGVB: the Variational Recurrent Auto-Encoder (VRAE). Such a model can be used for efficient, large scale unsupervised learning on time series data, mapping the time series data to a latent vector representation. The model is generative, such that data can be generated from samples of the latent space. An important contribu...

متن کامل

Improving Variational Inference with Inverse Autoregressive Flow

We propose a simple and practical method for improving the flexibility of the approximate posterior in variational auto-encoders (VAEs) through a transformation with autoregressive networks. Autoregressive networks, such as RNNs and RNADE networks, are very powerful models. However, their sequential nature makes them impractical for direct use with VAEs, as sequentially sampling the latent vari...

متن کامل

Generative Adversarial Source Separation

Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multilayer perceptron trained with a Wasserstein-...

متن کامل

Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization

We propose a new unsupervised sentence salience framework for Multi-Document Summarization (MDS), which can be divided into two components: latent semantic modeling and salience estimation. For latent semantic modeling, a neural generative model called Variational Auto-Encoders (VAEs) is employed to describe the observed sentences and the corresponding latent semantic representations. Neural va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.04440  شماره 

صفحات  -

تاریخ انتشار 2016